Diese Webseite speichert Cookies und verarbeitet personenbezogene Daten, um das Angebot jener zu verbessern. Sie können allgemein die entsprechenden Dienste uneingeschränkt zulassen („Einverstanden“) oder nur eingeschränkt zulassen („Einschränken“). Sie können diesen Hinweis aber auch ausblenden, dann werden die Dienste nur eingeschränkt zugelassen. Die Auswahl wird in einem Cookie für ein Jahr gespeichert, bei der Ausblendung nur bis zum Sitzungsende (mittels eines Session-Cookies).

Sie können auch weitere Einstellungen vornehmen (zum Auf-/Einklappen hier klicken):
AdSense
Analytics
  1. Mit der Einstellung „AdSense komplett erlauben“ erklären Sie sich damit einverstanden, dass die Webseite Cookies speichert, um für Sie personalisierte Werbung bereitstellen zu können. Mit der Einstellung „AdSense eingeschränkt erlauben“ werden keine solchen Cookies verwendet und es wird Werbung angezeigt, die sich am Thema der einzelnen Seite orientiert. In jedem Fall wird aber von Google ein Cookie gesetzt, durch das ein Betrug verhindert wird.
  2. Mit der Einstellung „Analytics komplett erlauben“ willigen Sie darin ein, dass die Webseite Cookies speichert, durch die es ermöglicht wird, Sie bei einem erneuten Besuch zuordnen zu können. Mit der Einstellung „Analytics eingeschränkt erlauben (Session-Cookie)“ wird ein Session-Cookie nur zur Aufzeichnung der aktuellen Sitzung angelegt. Mit der Einstellung „Analytics eingeschränkt erlauben (ohne Session-Cookie)“ wird kein Cookie gesetzt, sondern stattdessen ein Zählpixel mit einer nicht zuordenbaren ClientId.

Sie können auch auf der Datenschutzseite weitere Informationen einholen. In diesem Fall stimmen Sie einer eingeschränkten Nutzung zu (ohne Setzung eines Analytics-Cookies), um den Inhalt lesen zu können. Die Zustimmung wird mit einem Session-Cookie gespeichert. Sie können auf der Datenschutzseite die Einstellungen entsprechend anpassen.

Überspringe die Navigation
Schulstoff.org
Kontrastmodus umschalten
Zählmarke physik-8
Inhaltsverzeichnis [Anzeigen] [Verbergen]

Energie als Erhaltungsgröße

Energie und Energieformen

Was ist Energie?

Enerige ist in der Physik eine Größe. Mit Energien können Körper bewegt, verformt, erwärmt oder zur Aussendung von Licht gebracht werden.

Ihr Formelzeichen ist E, ihre Einheit wird in Joule angegeben.

Dabei ist ein Joule wie folgt definiert:

$$ \mathrm{1\,J = 1\,Nm = 1\,\frac{kg \cdot m^2}{s^2}} $$

Energieformen

Energie kann in verschiedenen Formen vorliegen:

Umwandlung und Übertragung von Energie

Energie kann von einer Energieform in eine andere umgewandelt werden und von einem Körper auf andere übertragen werden. Sie kann aber weder erzeugt noch vernichtet werden, sondern nur in andere Formen umgewandelt werden. Dies ist der Energieerhaltungssatz.

Entwertung von Energie

Bei einer Glühlampe werden lediglich fünf Prozent der elektrischen Energie in Licht umgewandelt. Der Rest wird als Wärme abgegeben. Da diese Form der Energie nicht weiterverwendet wird, spricht man von einer Entwertung von Energie.

Energieformen in der Mechanik

Ein Körper hat aufgrund seiner Lage oder seiner Bewegung mechanische Energie.

Höhenenergie

Die Höhenenergie eines Körpers ist umso größer,

Ein Körper hat eine von seiner Masse m und vom Ortsfaktor g abhängige Gewichtskraft FG:

$$ F_G = m \cdot g $$

Befindet er sich in der Höhe h gegenüber einem zuvor gewählten Nullpunkt, hat er die potenzielle Energie Epot:

$$ E_{pot} = F_G \cdot h = m \cdot g \cdot h $$

Bewegungsenergie

Die Bewegungsenergie eines Körpers ist umso größer,

Ein Körper der Masse m mit der Geschwindigkeit v hat die kinetische Energie Ekin:

$$ E_{kin} = \frac{1}{2} \cdot m \cdot v^2 $$

Energieumwandlung

Die Summe der kinetischen und potenziellen Energie sowie der Spannenergie bleibt konstant, solange keine Energie nach außen abgegeben wird.

Beispiel

Ein Ball wird fallgelassen. Zunächst ist Epot = 1 und Ekin = 0. Am Boden ist dann Epot = 0 und Ekin = 1.

Setzt man Ekin = Epot und löst nach h auf, so erhält man

$$ h = \frac{v^2}{2 \cdot g} $$

Löst man die Gleichung nach v auf, so erhält man:

$$ v = \sqrt{2 \cdot g \cdot h} $$

Mechanische Arbeit

Formen der Arbeit sind Hub-, Spann-, Beschleunigungs- und Reibungsarbeit. Unter mechanischer Arbeit versteht man, wieviel Energie ΔE auf einen Körper mechanisch übertragen oder von ihm abgegeben wird. Dabei wirkt eine Kraft F längs eines Weges s. Ist die wirkende Kraft längs des Weges konstant, gilt:

$$ W = F \cdot s $$

Arten mechanischer Arbeit

Wirkungsgrad

Der Wirkungsgrad gibt an, wie viel der zugeführten Energie Ezu in nutzbringende Energie Enutz umgewandelt wird. Der Wirkungsgrad ist aber immer kleiner als 1 bzw. 100 %.

Leistung

Die mechanische Leistung gibt an, wie schnell mechanische Arbeit verrichtet wird.

1 Watt ist dabei wie folgt definiert:

$$ \mathrm{1\,W = 1\,\frac{J}{s} = 1\,\frac{Nm}{s} = 1\,\frac{kg \cdot m^2}{s^3}} $$

Aufbau der Materie und Wärmelehre

Aufbau der Materie und innere Energie

Jeder Körper besteht aus einem oder mehreren Stoffen. Ein Stoff kann in mehreren Aggregatszuständen vorkommen: fest, flüssig, gasförmig, (Plasma).

Aufbau der Stoffe aus Teilchen

Jeder Körper besteht aus Atomen (und Molekülen), die von Stoff zu Stoff unterschiedlich sind. Diese sind in ständiger Bewegung. Zwischen den Atomen/Molekülen wirken Kräfte, von denen es mit der Anordnung abhängt, welchen Aggregatszustand der Körper hat.

Potenzielle und kinetische Energie der Teilchen

Die in einem Körper enthaltene Energie nennt man innere Energie. Die Teilchen besitzen aufgrund ihrer Bewegung kinetische Energie und durch die Anziehungskräfte potenzielle Energie. Bei Gasen ist die kinetische größer als die potenzielle.

Je höher die Temperatur eines Körpers ist, umso schneller bewegen sich im Mittel die Teilchen und desto höher ist die mittlere kinetische Energie.

Absoluter Nullpunkt

Die Temperatur, bei der die kinetische Energie verschwindet, heißt absoluter Temperaturnullpunkt. Er liegt bei ungefähr –273,15 °C. Die Temperatur misst man mit Grad Celsius (°C) oder mit Kelvin (K).

Änderung der inneren Energie

Änderung der inneren Energie durch Arbeit

Wird an einem Körper Arbeit W verrichtet, so erhöht sich seine Temperatur und somit seine innere Energie:

$$ W = E_i $$

Änderung der inneren Energie durch Wärme

Befindet sich ein wärmerer Körper in direktem Kontakt mit einem kälteren, geht die Wärme Q auf diesen über und erwärmt ihn:

$ Q = E_i \quad $ bzw. $ \quad Q = \Delta E_i $

Arten der Wärmeübertragung

Wärmeleitung

Durch Leitung wird Wärme bzw. Energie innerhalb eines Körpers ohne Bewegung transportiert. Unterschiedliche Stoffe leiten unterschiedlich gut. Metalle zum Beispiel sind gute Leiter, während Holz oder Gummi Wärme schlecht leiten.

Wärmeströmung bzw. Konvektion

Bei der Konvektion wird Energie von strömenden Flüssigkeiten oder Gasen transportiert. Zum Beispiel bewegt sich eine Papierspirale über einer Flamme.

Wärmestrahlung

Alle Körper, die wärmer als ihre Umgebung sind, senden Wärmestrahlen aus. Dabei wird Wärme ohne Stoffbeteiligung transportiert.

Jeder Körper, auf den Wärmestrahlung trifft, gibt in der Regel auch wieder Wärme in Form von Strahlung ab. Man spricht von Strahlungsgleichgewicht, wenn aufgenommene und abgegebene Strahlung gleich groß ist und so die Temperatur des Körpers konstant bleibt.

Erster Hauptsatz der Wärmelehre

Bei Energiezufuhr durch Arbeit und Wärme nimmt die innere Energie eines Körpers zu. Die innere Energie kann auch durch Abgabe von Energie in Form von Wärme oder Arbeit abnehmen.

Die Wärme-Temperatur-Gleichung

Die Temperaturänderung eines Körpers ist proportional zur zugeführten Wärme:

$$ Q \sim \Delta \vartheta $$

Um eine größere Masse zu erwärmen, benötigt man mehr Wärme:

$$ Q \sim m $$

Zusammenfassend ergibt sich:

$ Q \sim m \cdot \Delta \vartheta \quad $ bzw. $ \quad Q = c \cdot m \cdot \Delta \vartheta $

Der Proportionalitätsfaktor c wird als spezifische Wärmekapazität bezeichnet:

$$ c = \frac{Q}{m \cdot \Delta \vartheta} $$

Der Proportionalitätsfaktor gibt an, wie viel Wärme Q einem bestimmten Stoff mit einer Masse von 1 kg zugeführt werden muss, um seine Temperatur um 1 °C zu erhöhen.

Energiezufuhr und Zustandsänderungen

Schmelzen und Erstarren

Erwärmt man einen festen Körper fortwährend, steigt die Temperatur zunächst zu seiner Schmelztemperatur ϑs und bleibt beim Schmelzen konstant, da die Wärmeenergie benötigt wird, um die Verbindungen zwischen den Teilchen aufzubrechen.

Die Wärme, die erforderlich ist, um 1 kg eines Stoffes zu schmelzen, nennt man spezifische Schmelzwärme. Beim Erstarren der entsprechenden Flüssigkeitsmenge muss die gleiche Wärmemenge abgeführt werden.

So besitzt Wasser eine Schmelzwärme qs von $\mathrm{334\,\frac{kJ}{kg}}$, Blei von $\mathrm{25\,\frac{kJ}{kg}}$ und Aluminium von $\mathrm{396\,\frac{kJ}{kg}}$.

Sieden und Kondensieren

Erhitzt man eine Flüssigkeit fortwährend, so steigt die Temperatur bis zur Siedetemperatur ϑv und bleibt bem Sieden konstant. Die Wärme wird zum Lösen der Bindungen benötigt. Die Wärme, die erforderlich ist, um 1 kg eines Stoffes zu verdampfen, nennt man spezifische Verdampfungswärme.

Verdunsten von Flüssigkeiten

Beim Verdunsten geht eine Flüssigkeit unter dem Siedepunkt in den gasförmigen Zustand über, indem die schnellsten Teilchen aus der Flüssigkeit entweichen:

$$ E_{kin_\text{schnellste Teilchen}} >> E_{kin_\text{Flüssigkeit}} $$

Dadurch werden die restlichen Teilchen im Durchschnitt langsamer und die Temperatur sinkt. Die Verdunstung wird verstärkt,

Energieentwertung

Immer wenn bei einem Vorgang (in einem System) mechanische, elektrische oder chemische Energie in innere Energie umgewandelt wird bzw. Wärme von einem Gegenstand höherer Temperatur zu einem niedrigerer Temperatur fließt, wird Energie entwertet (oder umgangssprachlich „verbraucht“). Die Entwertung besteht darin, dass die Energie nach Ablauf des Vorgangs nicht nochmal für genau den gleichen Vorgang genutzt werden kann.

Man unterscheidet zwischen reversiblen Vorgängen, die vollständig umkehrbar sind, z.B. Fadenpendel, und irreversiblen Vorgängen, die nur in eine Richtung ablaufen und nicht umkehrbar sind, wie das Fallenlassen einer Vase.

Volumenänderung bei Temperaturänderung

Fließt Wasserdampf durch ein kühleres Rohr, dehnt sich dieses in der Länge aus. Es hängt von der Temperaturänderung, vom Material und der Länge des Rohres ab. Dabei gilt:

$$ \Delta l = \alpha \cdot l_0 \cdot \Delta\vartheta; \\ \begin{array}{rl} \\ \Delta l \;\;= & \text{Längenänderung} \\ \alpha \;\;= & \text{Längenänderungskoeffizient} \mathrm{\left[ \frac{1}{^\circ C} \right]} \\ l_0 \;\;= & \text{Ausgangslänge} \end{array} $$

Für die Volumenveränderung ΔV gilt:

$$ \Delta V = \gamma \cdot V_0 \cdot \Delta\vartheta;\\ \begin{array}{rl} \\ \Delta V \;\;= & \text{Volumenänderung} \\ \gamma \;\;= & \text{Volumenänderungskoeffizient} \mathrm{\left[ \frac{1}{^\circ C} \right]} \\ V_0 \;\;= & \text{Ausgangsvolumen} \end{array} $$

Anomalie des Wassers

Normalerweise dehnen sich Stoffe mit zunehmender Temperatur aus und ziehen sich bei sinkender zusammen. Beim Schmelzen von Eis aber verringert sich das Volumen um acht Prozent. Beim Gefrieren dehnt sich Wasser um circa zehn Prozent.

Erwärmt man es aus 0 °C, so zieht es sich zunächst zusammen und erreicht bei 4 °C seine größte Dichte.


Elektrische Energie

Ladung, Stromstärke, Spannung

Elektrisch geladene Körper

Alle Körper bestehen aus Atomen und Molekülen. Jedes Atom besitzt einen Atomkern mit Protonen und Neutronen sowie eine Atomhülle mit Elektronen. Durch Reiben zweier Körper oder durch elektro-chemische Vorgänge (z.B. Batterie) können Elektronen von einem Körper auf einen anderen übergehen.

Elektrische Ladung

Die elektrische Ladung eines Körpers gibt an, wie groß sein Elektronenüberschuss bzw. -mangel ist.

Ladung und Stromstärke

Die elektrische Stromstärke gibt an, wie viele Elektronen in einer bestimmten Zeit an einer Stelle eines Stromkreises vorbeifließen.

Ist die Stromstärke I konstant, gilt:

$$ I = \frac{Q}{t} $$

Spannung, Ladung, Energie

Die Spannung an den Polen einer Stromquelle gibt an, wie stark der Antrieb der Elektronen bzw. des elektrischen Stromes durch diese Quelle ist.

Spannung zwischen zwei MetallplattenSpannung zwischen zwei Metallplatten
Spannung zwischen zwei Metallplatten

Lädt man zwei Metallplatten entgegengesetzt auf, so misst man eine Spannung zwischen diesen. Zieht man sie auseinander, steigt die Spannung, da man mechanische Arbeit hinzufügt und diese als potenzielle Energie in den Elektronen gespeichert wird. Es gilt:

$$ \Delta E = Q \cdot \Delta U $$

Widerstände in Stromkreisen

Elektrischer Widerstand

Der elektrische Widerstand gibt an, wie sehr die Stärke des Stromflusses durch das Bauteil behindert wird.

Dabei gilt:

$$ \mathrm{1\,\Omega = 1\,\frac{V}{A}} $$

Gesetze der Reihenschaltung

Misst man in einem Stromkreis an unterschiedlichen Punkten, so erkennt man, dass die Stromstärke überall gleich groß ist:

I1 = I2 = I3 = ...

Die Stromspannung ist jedoch anders. Die Einzelspannungen sind in der Summe gleich der Spannung der Stromquelle:

U = U1 + U2 + ...

Die Widerstände werden wie folgt berechnet:

$ R = \dfrac{U_\text{Quelle}}{I} \quad $ bzw. $ \quad R_1 = \dfrac{U_1}{I_1} \quad $ bzw. $ \quad R_2 = \dfrac{U_2}{I_2} $

Fließt Strom durch ein Bauteil, so herrscht zwischen den Anschlüssen eine Spannung U. Sie wird Folgendermaßen berechnet:

$$ U = R \cdot I $$

Elektrische Energie und Leistung

Die von einem Elektrogerät aufgenommene Energie E ist umso größer,

Es gilt:

Die elektrische Leistung gibt an, welche elektrische Energie in einer bestimmten Zeit umgesetzt wird.

Die elektrische Leistung eines Bauteils ist gleich dem Produkt aus der Spannung am Bauteil und der Stromstärke, die durch das Bauteil fließt:

$$ P = U \cdot I $$